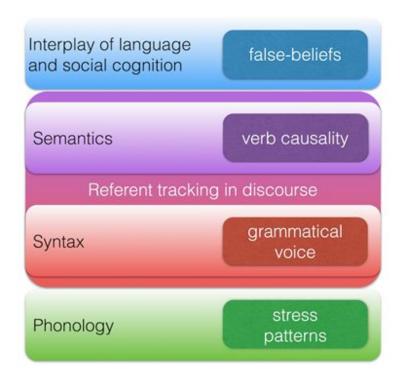
Rhythm and other stories: naturalistic and neurobiologically-relevant approaches in language comprehension

Dr. Katerina Danae Kandylaki @KaterinaDKand @BANDLabUM

INCOMENT INCOMENT INCOME

Previous fMRI results New experiment - EEG & behavioral Behavioral results EEG experiment (work in progress)

AND AND A CONTRACT OF A CONTRA


A little bit of background

- I am a linguist
- I fell in love with Syntax at Year 2
- Syntax 1 awesome, Syntax 2 suspicious
- Wondering whether these rules are true
- Master in Language Science and Technology
- Fell in love with experimental work
- Causality and animacy

- Still wondering whether the brain cares about the categorisations made by linguists
- PhD naturalistic experiment to find out what the brain is sensitive to and how

My PhD

•auditory stimuli: spoken language comprehension

 naturalistic stories: extended context, room for manipulations at many linguistic levels within the same context

•critical events (compound words, noun phrases, sentences) **embedded** in their natural context

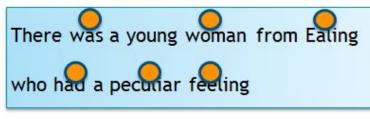
naturalness: rich context and auditory modality

Kandylaki et al. 2015, HBM; 2016, JNeurosci; 2017, JoCN

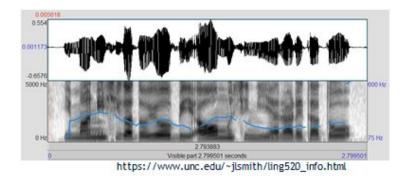
My PhD

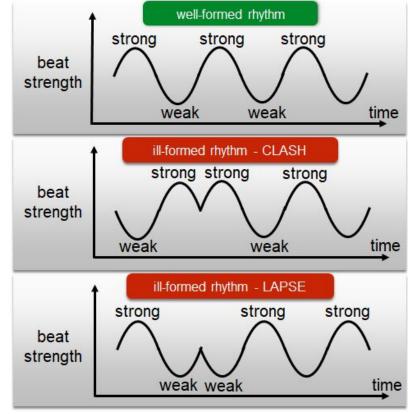
•auditory stimuli: spoken language comprehension

 naturalistic stories: extended context, room for manipulations at many linguistic levels within the same context


•critical events (compound words, noun phrases, sentences) **embedded** in their natural context

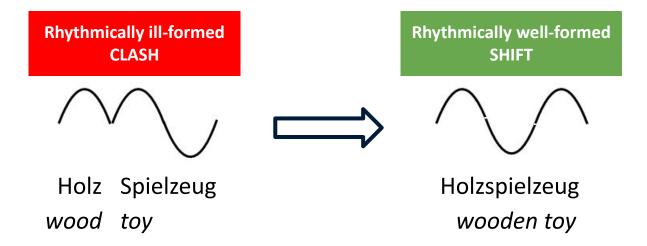
naturalness: rich context and auditory modality


🗞 Maastricht University


Kandylaki et al. 2015, HBM; 2016, JNeurosci; 2017, JoCN

Rhythm in language and the Rhythm Rule (RR)

limericks



Kandylaki & Henrich, 2014, CogSci; Kandylaki et al. 2017, JoCN

Rhythm regularity in compounds

Linguistic rhythm: lexical stress interacting with rhythmical stress

Kandylaki et al. 2017, JoCN

Rhythm regularity in compounds

Linguistic rhythm: lexical stress interacting with rhythmical stress

Rhythmically well-formed NO-SHIFT

Plastik Spielzeug plastic toy

Rhythmically ill-formed LAPSE

Plastik Spielzeug plastic toy

Kandylaki et al. 2017, JoCN

2x2 design of lexical stress and rhythmical well-formedness

	Well-formed rhythm	Ill-formed rhythm
Correct	NOSHIFT	CLASH
lexical	'PLAStik - spielzeug	'HOLZ - <mark>spiel</mark> zeug
stress	(plastic toy)	(wooden toy)
Incorrect	SHIFT	LAPSE
lexical	'HOLZ - spielzeug	'PLAStik - spiel <mark>zeug</mark>
stress	(wooden toy)	(plastic toy)
Maastricht University	(\setminus)	/ A / Kandy

andylaki et al. 2017*, JoCN*

Compound words

Story 105 - Zirkus

Der Clown Valentino genießt das Leben im Zirkus 'Fiforello', da sie viel herumreisen. Jedoch will der Zirkus bald auch ein festes Zirkuszelt für die Winterzeit bauen, Jetzt benötigen sie nur noch ein passendes Baugrundstückguss und schon kann der Bau beginnen. Neulich trugActerion der Clown bei einem Auftritt die Prinzessin auf Stelzen durch die Manege, was die Zuschauer sehr amüsiert hat. Der Clown machte dabei lustige Fratzen, griff in sein rotes Stoffsäckchen und warf der Dame in der ersten Reihe ein kleines Holzspielzeugstert zu. Im improvisierten Sketch nahm der Clown einen Kuschelbär, eine Zahnbürste und ein Kissen aus seinem Säckchen. Als er an den Rand der Manege kam und vorgab, sich die Zähne zu putzen, stand er mit dem Rücken zur Prinzessin. In dem Moment klaute die Prinzessin den Kuschelbär und versteckte ihn unter ihrem Kleid. Als der Clown sich ins Bett legen wollte, konnte er sein Kuscheltier nicht finden. Und weil er so verwirrt aussah, TOM mussten alle Zuschauer herzlich lachen. Dann wurde der Clown von der Prinzessin gestoßenessenoor und unter dem Kleid kam der Kuschelbär wieder hervor. Der Clown freute sich, sein Kuscheltier wiedergefunden zu haben! Dann nahm er einen Kohlemalstiftuest aus seiner Tasche und fing an, etwas zu zeichnen. Als er seine Zeichnung dem Publikum zeigte, schien ein Zuschauer sehr fasziniert davon. Der Clown ing näher zu ihm und unterhielt sich mit ihm über das Kunstwerk. NONTOW Der Zuschauer mochteAcTLOW den Clown, und weil die Zeichnung ein ganz skurriles Porträt der Prinzessin war, wurde die Diskussion sehr lustig. Schließlich stand der Zuschauer auf und brachte das ganze Publikum zum Klatschen. Zum Dank schenkte der Clown dem Zuschauer die Zeichnung Der Zuschauer wurde von dem Clown für seine freundliche, mitreißende Art geschätztessiow. Das Publikum klatschte und johlte begeistert. Der Zuschauer war nämlich vielen aus den Medien als der Landesvolkswirtsoster von Hessen bekannt.

Sheel1

	Stor		for stress patterns	St	ory
		lash		noshift	lapse
Bahnzeitschrift	101	201	Modezeitschrift	207	10
Bankkaufmann	203	103	Handelskaufmann	107	20
Baugrundstück	205	105	Weidegrundstück	212	11
Busbahnhof	117	217	Reisebahnhof	116	21
Busfahrschein	108	208	Fährenfahrschein	209	10
Chefvolkswirt	102	202	Landesvolkswirt	105	20
Feldhandball	217	117	Hallenhandball	118	21
Filzhausschuh	212	112	Lederhausschuh	111	21
Flachbildschirm	201	101	Plasmabildschirm	208	10
Großbaumarkt	202	102	Profibaumarkt	215	i 11
Hauptbahnhof	208	108	Güterbahnhof	110	21
Hauptwohnsitz	119	219	Nebenwohnsitz	106	20
Raumputzpian	220	120	Klinikputzplan	119	21
Herzstillstand	219	119	Atemstillstand	218	11
Holzspielzeug	105	205	Plastikspielzeug	112	21
Kraftfahrzeug	104	204	Wasserfahrzeug	216	11
Kreishauptstadt	113	213	Bundeshauptstadt	211	11
Kunstdenkmal	209	109	Kriegerdenkmal	220	12
Kurzparkplatz	215	115	Mofaparkplatz	204	10
Landgasthof	213	113	Wandergasthof	206	10
Messwerkzeug	120	220	Profiwerkzeug	219	11
Notfahrplan	116	216	Regelfahrplan	210	11
Rostbratwurst	109	209	Rinderbratwurst	202	10
Salzbergwerk	103	203	Silberbergwerk	214	11
Schnellkochtopf	207	107	Profikochtopf	101	20
Sportflugzeug	210	110	Wasserflugzeug	109	20
Staatshaushalt	206	106	Bundeshaushalt	201	10
Stadtrundfahrt	107	207	Alsterrundfahrt	203	10
Stammmannschaft	104	204	Frauenmannschaft	104	20
Startbildschirm	118	218	Rechnerbildschirm	115	21
Startzeitpunkt	214	114	Antrittszeitpunkt	103	20
Stoffhandtuch	112	212	Badehandtuch	217	11
Strahltriebwerk	110	210	Kolbentriebwerk	113	21
Tatzeitraum	211	111	Krisenzeitraum	114	21
Textbaustein	218	118	Werbebaustein	120	
Tischfußball	115	215	Hallenfußball	117	21
Triebfahrwerk	216	116	Schienenfahrwerk	213	11
Wachsmalstift	114	214	Kohlemalstift	205	
Waldschwimmbad	106	206	Hallenschwimmbad	102	20

Kandylaki 2015

Experimental procedure

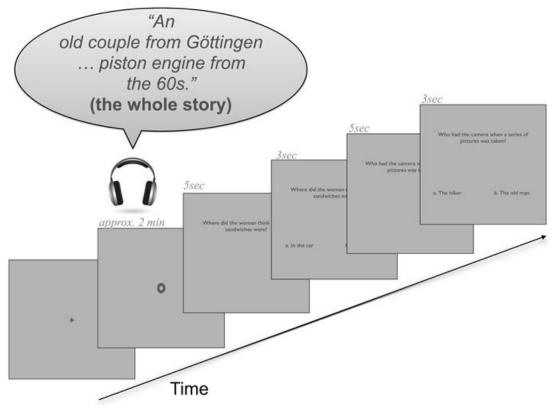
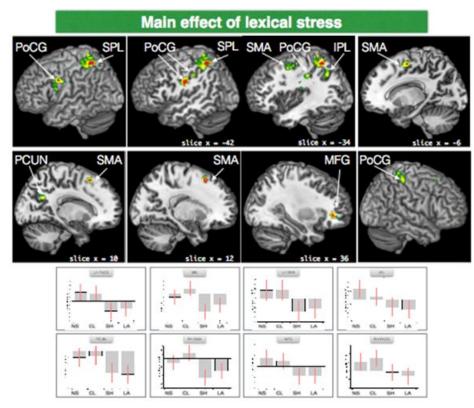
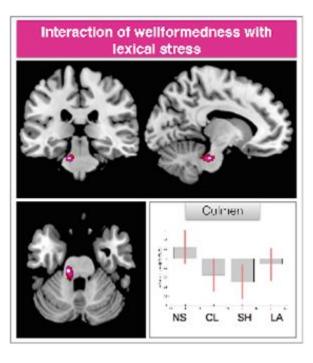
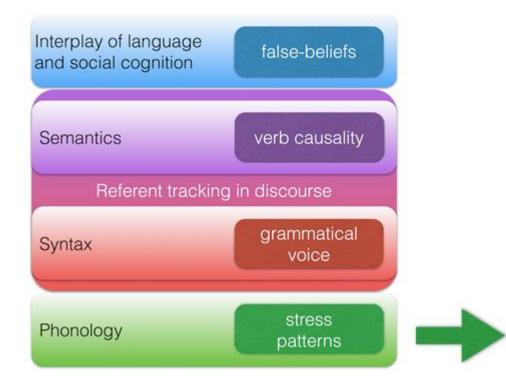




Figure from Kandylaki et al. 2015

Results



Maastricht University

Kandylaki et al. 2017, JoCN

Interpretation

- processing of linguistic rhythm in natural context
- absence of task directed to the prosodic features
- findings connect rhythmical processing in language with:
 - 1. sensorimotor network of speech perception (Hickok, Houde, & Rong, 2011)
 - 2. domain-independent timing perception (Schwartze et al., 2012)

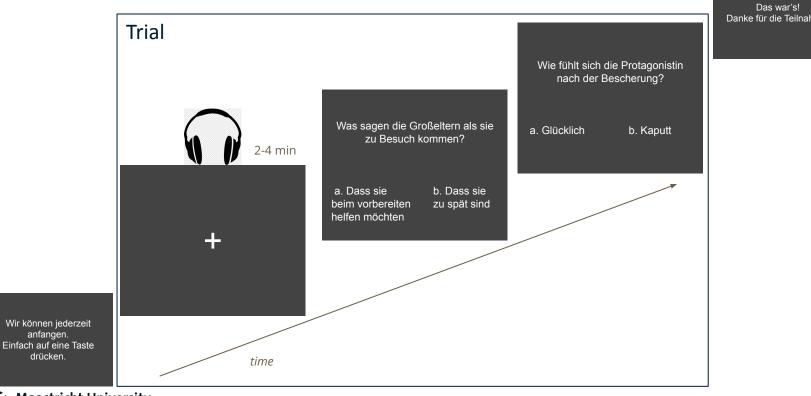
Interlude

Okay, so language comprehension uses existing mechanisms, such as the one for timing And that is realised in the brain also in motor areas

Does that mean that if someone trains these areas as part of a rhythm mechanism, they might influence their language comprehension?

How to approach beat extraction in a naturalistic experiment?

- Stimuli and Procedure
- Quantification of rhythm
- Tested population
- The Rhythm Network nodes


Stimuli - rhythmically regular vs. irregular

Stories: speech rhythm not regular

Poems: metered speech, rhythmic regularity

Speech comprehension experiment

Danke für die Teilnahme!

Maastricht University How to approach beat extraction in a naturalistic experiment?

- Stimuli and Procedure
- Quantification of rhythm
- Tested population
- The Rhythm Network nodes

Audio content analysis for the speech signal

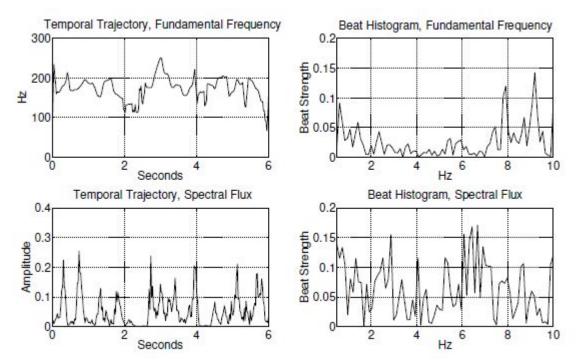
Audio content analysis: Music Genre Classification

We assume that the rhythmic content of a sound can be captured through the signal-inherent periodicities and their properties.

According to phonetics:

- 1. Amplitude loudness denotes the stresses, intonation
- 2. Pitch F0, speech prosody
- 3. Spectral changes sound texture and timbre (tonal/noisy)

Novelty functions / speech features


Beat histogram (on basis of the trajectory of various relevant signal quantities over time)

- 1. RMS energy
- 2. Fundamental frequency (FO)
- 3. Spectral Flux (general spectral change)
- 4. Spectral Flatness (tonalness / noisiness)
- 5. Spectral Centroid (spectral centre-of-weight)

We need to test the features for our stimuli

Maastricht University

Features

Gestern war ich in einem Selbsterfahrungskurs. Ich bin mir nicht wirklich sicher, ob es mir gefallen hat

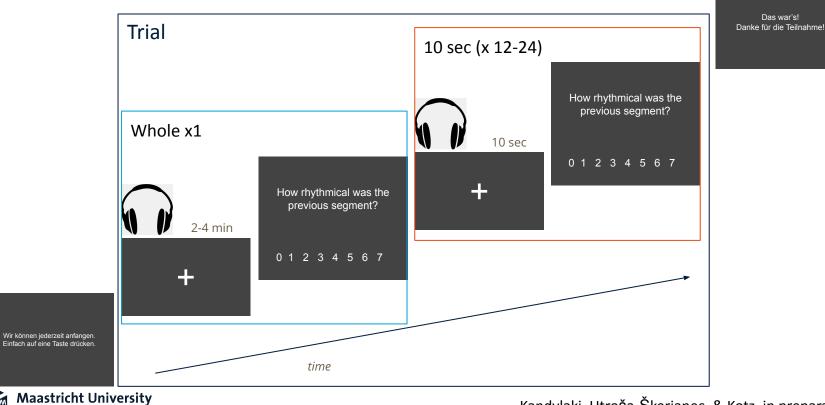
Lykartsis & Weinzierl, 2015

Theoretical beat

We combine the (normalized) features into a new feature

```
33% RMS Energy - loudness33% FO - pitch33% Spectral Flux - higher for voiced parts
```

We call this new feature theobeat



Testing the features & design

Computationally Extracting the features for our stimuli and statistically analysing them by category Behaviorally Rhythm evaluations of the stimuli and statistical analysis of the evaluations

		Condition	
		Poem - metered speech	Story - non metered speech
Length	Whole audio	Poem Whole	Story Whole
	10 sec chunks	Poem 10sec	Story 10sec

Rhythm evaluation - behavioral experiment

Evaluation scale

Maastricht University

Response	German Original	English Translation
0	stille	silence
1	gar nicht rhythmisch	not rhythmic at all
2	kaum rhythmisch	barely rhythmic
3	ein wenig rhythmisch	a little rhythmic
4	mittelmäßig rhythmisch	moderately rhythmic
5	gut rhythmisch	well rhythmic
6	sehr gut rhythmisch	very well rhythmic
7	perfekt rhythmisch	perfectly rhythmic

Hypotheses - behavioral

- Poems will be rated as more rhythmical than stories
 - This would be for the whole but not necessarily for the 10sec (because of the variability)
- Poems will differ from stories based on their rhythm-related features (RMS Energy, F0, and Spectral Flux)

Hypotheses - computational

Only the features related to beat (RMS Energy, FO, Spectral Flux, and Theobeat) will differ significantly between poems and stories.

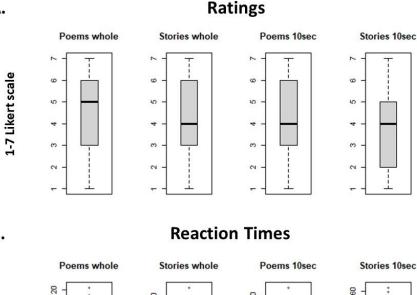
The other features will not be significantly different between poems and stories.

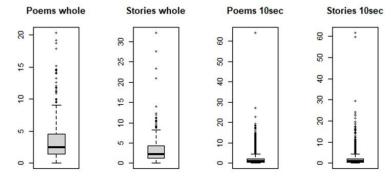
The variability of the responses will be bigger in chunks than in whole audio.

Behavioral results

Ratings - as expected:

 Whole poems rated higher than whole stories Α.


Β.


seconds

 In the 10sec segments the means are very close but the data is skewed differently

RTs longer for whole poems than whole stories, 10sec segments similar RTs

Maastricht University

Referential statistics - Scoring

Logistic regression - Mixed effects models, fitted with clmm() from R package 'ordinal'

Scoring

- Null: Scoring ~ RI item + RI participant
- ME: Scoring ~ Condition + Length + RI item + RI participant INT: Scoring ~ Condition * Length + RI item + RI participant

RI: random intercept, ME: main effect(s), INT: interaction

Results - stepwise comparisons for Scoring

Model comparisons with anova (m1, m2) Null vs. ME *** ME vs. INT -

AIC values N: 44274, **ME: 44255**, INT: 44257 Both measures point to the main effects model as the best fit, but only the Length factor was significant within the model (p < .001)

The Scoring values are best explained as a main effect of length

Maastricht University

Referential statistics - RTs

Linear regression - Mixed effects models, fitted with $\verblmer()$ from R package 'lme4'

RTs

- Null: RT ~ RI item + RI participant
- ME: RT ~ Condition + Length + RI item + RI participant
- INT: RT ~ Condition * Length + RI item + RI participant

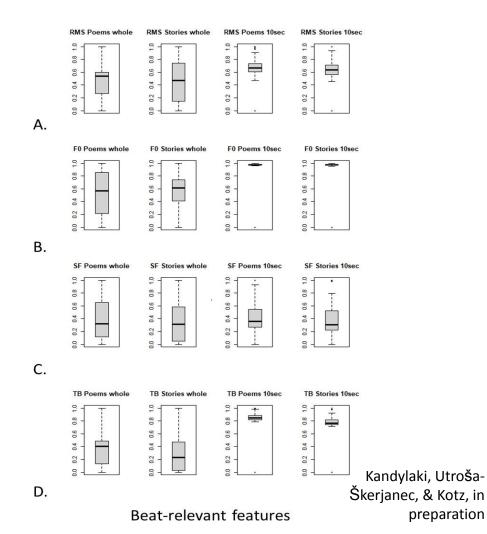
RI: random intercept, ME: main effect(s), INT: interaction

Results - stepwise comparisons for RTs

Model comparisons with anova (m1, m2) Null vs. ME *** ME vs. INT -

AIC values N: 56009, **ME: 55514**, INT: 55516 Both measures point to the main effects model as the best fit

The RTs are (also) best explained as **main effects of rhythmic regularity and length** (the main effects of rhythmic regularity and length are significant)


Maastricht University

Computational results for beat-relevant features

- A. RMS energy
- B. F0/Pitch
- C. Spectral Flux
- D. Theobeat
- Theobeat shows the expected pattern, and similar to the behavioral results

The composition is meaningful

🗞 Maastricht University

Referential statistics - same procedure for all features

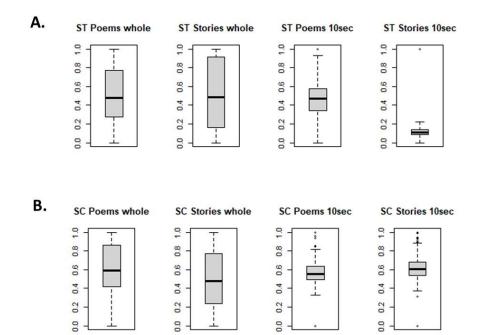
Linear regression - Mixed effects models, fitted with lmer() from R package 'Ime4'

ComputationalNull model:[feature] ~ RI itemME:[feature] ~ Condition + Length + RI itemINT:[feature] ~ Condition * Length + RI item

RI: random intercept, ME: main effect(s), INT: interaction

AIC values for the beat-relevant features

	Null	ME	INT
RMS Energy	3714.8	3658.4	3660.4
F0 / Pitch	544.2	518.2	520.2
Spectral Flux	11129.4	10572.6	10574.6
Theobeat	544.2	518.2	520.2


Results stepwise comparisons - beat-relevant features

Model comparisons with anova (m1, m2) RMS Energy, FO, Spectral Flux, Theobeat Null vs. ME *** ME vs INT -

Within the main effects model for each feature: RMS, F0, Theobeat: Only rhythmic regularity significant (p < .001) Spectral Flux: Only Length significant (p < .001)

The beat-relevant features differed as a function of main Maastricht University effects of rhythmic regularity or length **Computational results for non beat-relevant features**

- A. Spectral Flatness whole
 no differences, 10 sec
 stories scored much
 lower
- B. Spectral Centroid no big differences

Non beat-relevant features

AIC values for the non beat-relevant features

		Null	ME	INT
Non beat-relevant	Spectral Centroid	13420.6	13111.6	13103.1
	Spectral Flatness	137.8	127.4	129.4

Results stepwise comparisons - non beat-relevant features

Spectral Centroid Spectral Flatness

Null vs. ME	* * *	Null vs. ME	* * *
ME vs INT	* *	ME vs INT	-
-> INT		-> ME	

SC: interaction effect significant (p = .001) SFlat: no main effects reached significance (p > .1)

The non beat-relevant features showed a mixed pattern Maastricht University

Summary & Discussion - Behavioral

The Scoring results did not show an effect of rhythmic regularity

Possibly the task was too meta-cognitive, asking for an evaluation instead of recording spontaneous movement while listening to the rhythmic stimuli.

Maybe the difference is earlier in the system, than in the decision of evaluation and needs to be approached with on-line and higher temporal resolution methods, such as EEG.

Summary & Discussion - Computational

The periodicities we quantified did differ between poems and stories.

The rhythm of the speech signal was not composed by only the beat-relevant features, but also by the non-beat relevant ones, such as Spectral Centroid.

There is more to rhythm than just the beat - this is shown in this naturalistic experiment with stories (rich context).

Take home for future studies

In the EEG study which we have collected data for, we will not only focus on the Theobeat as a quantification of rhythmic regularity.

How to approach beat extraction in a naturalistic experiment?

- Stimuli and Procedure
- Quantification of rhythm
- Tested population
- The Rhythm Network nodes

Tested population

OPERA hypothesis (Overlap, Precision, Emotion, Repetition, Attention):

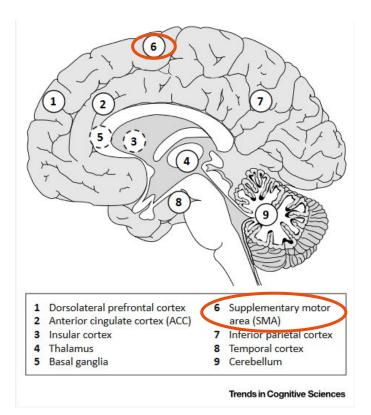
Benefits of musical training on the neural encoding of speech - based on adaptive plasticity

Who has a trained rhythm network?

https://www.thomann.de/blog/en/quiz-9-types-musicians-one/

How to approach beat extraction in a naturalistic experiment?

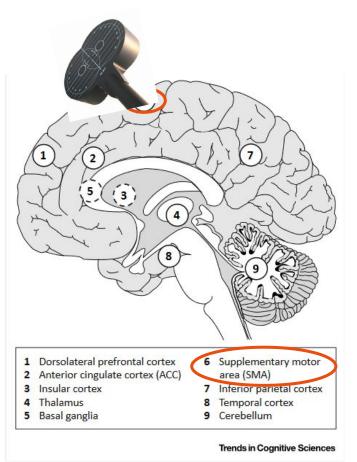
- Stimuli and Procedure
- Quantification of beat
- Tested population
- The Rhythm Network nodes


The rhythm network

Cortico-subcortical brain network for time and rhythm processing

SMA involved in beat extraction

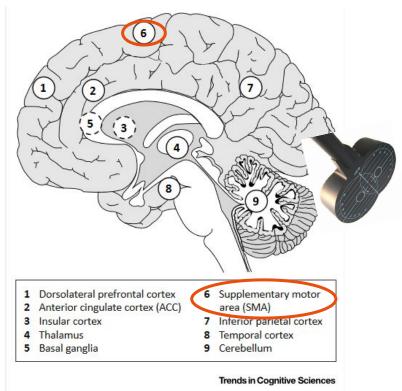
the cognitive process by which the frequency and phase of some external periodic signal are inferred by a listener



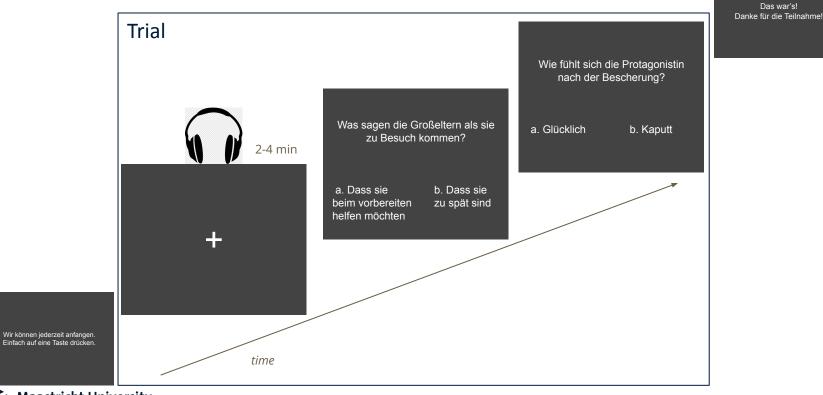
Kotz, Ravignani, & Fitch, 2018, TICS

Targeting the supplementary motor area (SMA)

Expected that musicians will respond the same as non musicians when their SMA is inhibited

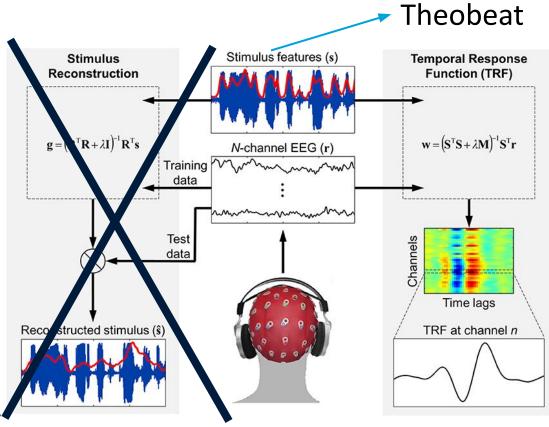


Kotz, Ravignani, & Fitch, 2018, TICS


Adding a control site - Early Visual Cortex (EVC)

To exclude possible explanations that it is the stimulation in general and not the stimulation in the SMA in specific causing the differences

Speech comprehension experiment



How to approach beat extraction in a naturalistic experiment?

- Stimuli and Procedure
- Quantification of beat
- Tested population
- The Rhythm Network nodes

Modeling of the data - work in progress

Thank you for inviting me!

Keep in touch with the Basic and Applied NeuroDynamics lab <u>https://band-lab.com/</u>

Twitter @BANDLabUM

Facebook
<u>https://www.facebook.com/BANDLabUM</u>

Quantification of beat from the speech signal

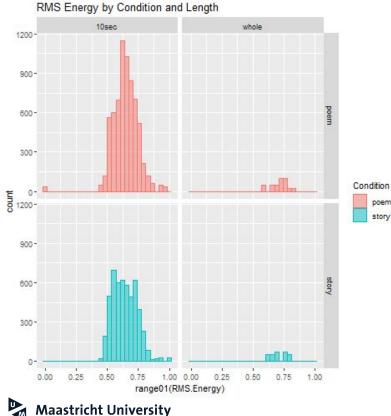
- Early approaches: annotations between consonants, vowels, stresses and calculating the the distance between these (Δ C, %V , nPVI)
- Newer approaches: extract rhythmic quantities directly from the acoustic signal, specifically by extracting salient periodicities and their characteristics from its amplitude envelope
- Language Identification (LID): used automatic segmentation of the speech signal in pseudosyllables and extracted statistical features describing energy and fundamental frequency

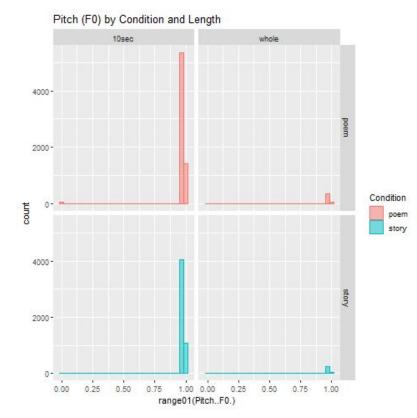
Maastricht University

Lykartsis & Weinzierl, 2015

In this approach

The focus is shifted on **quantities in the speech signal** rather than on the regularities of more linguistically defined speech elements

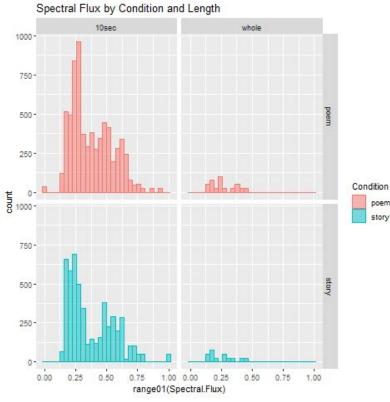

Same quantification can be used for different languages independently of their rhythm class.

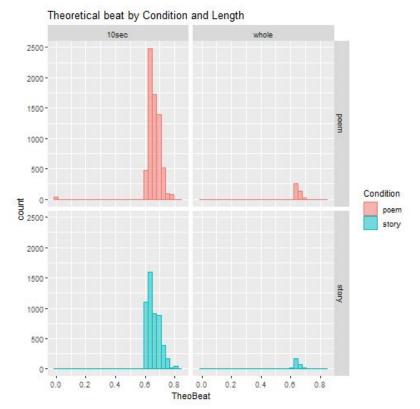


Results - computational - RMS Energy, F0

poem

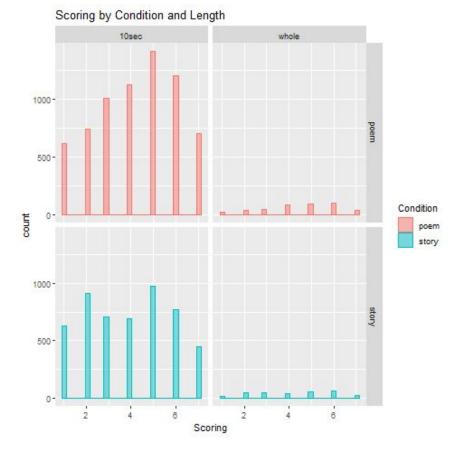
story





Results - computational - Spectral Flux, Theobeat

poem


story

Maastricht University

Results - behavioral - Scoring

